What's the point? Frame-wise Pointing Gesture Recognition with Latent-Dynamic Conditional Random Fields
نویسندگان
چکیده
We use Latent-Dynamic Conditional Random Fields to perform skeleton-based pointing gesture classification at each time instance of a video sequence, where we achieve a frame-wise pointing accuracy of roughly 83%. Subsequently, we determine continuous time sequences of arbitrary length that form individual pointing gestures and this way reliably detect pointing gestures at a false positive detection rate of 0.63%.
منابع مشابه
Hidden-state Conditional Random Fields
We present a discriminative latent variable model for classification problems in structured domains where inputs can be represented by a graph of local observations. A hidden-state Conditional Random Field framework learns a set of latent variables conditioned on local features. Observations need not be independent and may overlap in space and time. We evaluate our model on object detection and...
متن کاملVision-Based Hand Gesture Spotting and Recognition Using CRF and SVM
In this paper, a novel gesture spotting and recognition technique is proposed to handle hand gesture from continuous hand motion based on Conditional Random Fields in conjunction with Support Vector Machine. Firstly, YCbCr color space and 3D depth map are used to detect and segment the hand. The depth map is to neutralize complex background sense. Secondly, 3D spatio-temporal features for hand ...
متن کاملDynamic Gesture Recognition based on Image Sequence
This paper proposed an algorithm for 3D hands tracking on the learned hierarchical latent variable space, which employs a Hierarchical Gaussian Process Latent Variable Model(HGPLVM) to learn the hierarchical latent space of hands motion and the nonlinear mapping from the hierarchical latent space to the pose space simultaneously. Nonlinear mappings from the hierarchical latent space to the spac...
متن کاملFeature Learning for Conditional Random Fields and its Application to Gesture Recognition
Conditional random fields (CRFs) have been successful in many sequence labeling tasks, which conventionally rely on a hand-craft feature representation of input data. However, a powerful data representation could be another determining factor of the performance, which has not attracted enough attention yet. We describe a novel sequence labeling framework for gesture recognition, which builds a ...
متن کاملConditional Sequence Model for Context-Based Recognition of Gaze Aversion
Eye gaze and gesture form key conversational grounding cues that are used extensively in face-to-face interaction among people. To accurately recognize visual feedback during interaction, people often use contextual knowledge from previous and current events to anticipate when feedback is most likely to occur. In this paper, we investigate how dialog context from an embodied conversational agen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1510.05879 شماره
صفحات -
تاریخ انتشار 2015